Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract 316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBF 316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.more » « less
-
Abstract In parts of Africa, greater honeyguides (Indicator indicator) lead people to bees' nests, after which people harvest the honey, and make beeswax and larvae accessible to the honeyguide. In scientific and popular literature, a similar cooperative relationship is frequently described between honeyguides and honey badgers (Mellivora capensis), yet the evidence that this occurs is unclear. Such a partnership may have implications for the origins of our own species' cooperation with honeyguides and for the ecology and conservation of both honey badgers and honeyguides. Here, we review the evidence that honey badgers and honeyguides cooperate to access bees' nests, drawing from the published literature, from our own observations whilst studying both species, and by conducting 394 interviews with honey‐hunters in 11 communities across nine African countries. We find that the scientific evidence relies on incomplete and second‐hand accounts and does not convincingly indicate that the two species cooperate. The majority of honey‐hunters we interviewed were similarly doubtful about the interaction, but many interviewees in the Hadzabe, Maasai, and mixed culture communities in Tanzania reported having seen honey badgers and honeyguides interact, and think that they do cooperate. This complementary approach suggests that the most likely scenario is that the interaction does occur but is highly localized or extremely difficult to observe, or both. With substantial uncertainty remaining, we outline empirical studies that would clarify whether and where honeyguides and honey badgers cooperate, and emphasize the value of integrating scientific and cultural knowledge in ecology.more » « less
An official website of the United States government
